Adjoint of Matrix
·
Mathematics/Linear Algebra
Adjoint of Matrix Definition 1. Let $A \in M_{m \times n}(F)$. We define the adjoint or conjugate transpose of $A$ to be the $n \times m$ matrix $A^*$ such that $(A^*)_{ij} = \overline{A_{ji}}$ for all $i, j$. Theorem 1 Theorem 1. Let $A, B \in M_{m \times n}(F)$, and let $C \in M_{n \times p}$. Then (a) $(A+B)^* = A^* + B^*$ (b) $(cA)^* = \overline{c} A^*, \forall c \in F$. (c) $(AC)^* = C^*A^*..