The Characteristic Polynomial
·
Mathematics/Linear Algebra
이 포스트에서 $V$는 $n$차원 $F$-벡터공간으로 취급한다. Theorem 1 Theorem 1. (a) Let $T \in \mathcal{L}(V)$. Then a scalar $\lambda$ is an eigenvector of $T$ $\Longleftrightarrow$ $\det(T - \lambda I_V) = 0$. (b) Let $A \in M_{n \times n}(F)$. Then a scalar $\lambda$ is an eigenvector of $A$ $\Longleftrightarrow$ $\det(A - \lambda I_n) = 0$. Proof. (a) Since $\lambda$ is an eigenvector of $T$, there is an nonzero v..