Riemann Sum and Definite Integral
·
Mathematics/Calculus
Partition Definition 1. For a closed interval [a,b][a,b], we subdivide the interval into subintervals, not necessarily of equal widths, as choosing n1n1 points {x1,...,xn1}{x1,...,xn1} between aa and bb that are in increasing order, so that x0=apartitionofx0=apartitionof[a, b].Andwedenotethewidthofthe.Andwedenotethewidthofthekthsubintervalbythsubintervalby\Delta x_kwhichmeansthatwhichmeansthat\Delta x_k = x_k - x_{k-1}$. Norm of a P..
Mean Value Theorem
·
Mathematics/Calculus
Rolle's TheoremTheorem 1. Let ff be a function that satisfies the following conditions:(1) ff is continuous on [a,b][a,b].(2) ff is differentiable on (a,b)(a,b)(3) f(a)=f(b)f(a)=f(b)Then there is a number c(a,b)c(a,b) such that f(c)=0.Proof. We may think of three cases. (1) If f(x)=k for any constant k, then c can be taken to be any number in (a,b).(2) If $f(x) > f(a), \forall x \in ..
Critical Numbers
·
Mathematics/Calculus
Fermat's TheoremTheorem 1. If f has a local maximum or minimum at c, and if f(c) exists, then f(c)=0.Proof. Without loss of generality, suppose that f has a local maximum at c. This means that f(c)f(c+h) for h which is sufficiently close to 0. If h>0, we have $$\frac{f(c+h) - f(c)}{h} \leq 0 \\ \Longrightarrow \lim_{h \rightarrow 0^+} \frac{f(c+h)-f(c)}{h} = f'(c)..
Maximum and Minimum
·
Mathematics/Calculus
Absolute Maximum and MinimumDefinition 1. Let c be a number in the domain D of a function f. Then f(c) is the(1) absolute maximum value of f on D if f(c)f(x),xD.(2) absolute minimum value of f on D if f(c)f(x),xD.f의 maximum과 minimum은 extreme value of f, 즉 f의 극값이라고 부르기도 한다.  Local Maximum and MinimumDefinition 2. The number f(c) ..
Conditional Probability
·
Mathematics/Probability
Conditional ProbabilityDefinition 1. Let E and F be events. We define the conditional probability that E occurs given that F has occurred, denoted by P(E|F), by P(E|F)=P(EF)P(F) if P(F)>0.사건 F가 먼저 일어났다는 가정 하에 E가 일어나는 확률을 위와 같은 방법으로 정의한다. 이때 sample space를 F로 한정 지을 수 있고, F와 동시에 E가 일어나야 하므로 위와 같은 정의는 합리적이다. 위 식에서 양변에 P(F)를 곱함으로써 P(EF)=P(F)P(E|F)로..
Axioms of Probability
·
Mathematics/Probability
Axioms of ProbabilityLet ES be an event. Then we call the function P:ER, following below conditions, the probability. (1) 0P(E)1(2) P(S)=1(3) For any sequence of mutually exclusive events E1,E2,..., P(i=1Ei)=i=1P(Ei)통계적인 의미에서 확률은 relatvie frequency, 상대 빈도수의 관점에서 정의되었다. 즉, sample space가 $..
Union and Intersection of events, Mutually Exclusive
·
Mathematics/Probability
Union and IntersectionDefinition 1. For any events E,F, we define the union of E and F by EF. Similarly, the intersection of E and F is defined as EF=EF. 두 사건 E,F가 있을 때 이 사건 둘 중 하나가 혹은 둘 다 일어나는 사건을 union, 합사건이라고 하고, 둘 다 일어나는 사건을 intersection, 곱사건이라고 부른다. 숫자를 늘려서 다음과 같이 무한합, 무한곱도 정의할 수 있다. Definition 2. Let E1,E2,... be events. We define the union of these ev..
Sample Space and Events
·
Mathematics/Probability
Sample SpaceDefinition 1. Sample space is the set of all possible outcomes of an experiment, and is usually denoted by S.모든 시행에서 나올 수 있는 결과값을 모아놓은 집합을 sample space, 표본 공간이라고 부른다.  EventDefinition 2. Any subset E of the sample space is called an event. In other words, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, the..
The Basic Principle of Counting, Permutation, Combination
·
Mathematics/Probability
The Basic Principle of CountingThe Basic Principle of Counting. If an experiment consisting of two phases is such that there are n possible outcomes of phase 1 and, for each of these n outcomes, there are m possible outcomes of phase 2, then there are nm possible outcomes of the experiment. '곱의 법칙'으로 흔히들 배우는 내용이다. 첫 번째에서 n개의 케이스가 나오고, 각 케이스에 대해서 두 번째에는 m개의 케이스가 존재한다면 총 nm개의 케이스가 존재..
Open Set과 Closed Set의 관계
·
Mathematics/Real analysis
Theorem 1. A set O is open Oc is closed. Likewise, a set F is closed Fc is open.Proof. () O가 open이라고 하자. xOc의 limit point라고 하면, x의 어떤 근방을 가지고 와도 항상 Oc와 겹치는 부분이 존재하므로 xOc이다. ( 만약 xO이면 x의 어떤 근방이든 항상 O에 완전히 포함되므로 Oc와 겹치는 부분이 생길 수 없다.) 따라서 Oc는 closed이다.() Oc가 closed라고 하자. aO를 가져온 뒤 a..