Divergent Sequences
·
Mathematics/Real analysis
Divergent SequencesDefinition 15.1. Let $\{a_n\}$ be a sequence. We say that $\{a_n\}$ diverges to infinity (or minus infinity) and write \[ \lim_{n \to \infty} a_n = \infty \quad (\lim_{n \to \infty} a_n = -\infty) \] if for every real number $M$, there exists a positive integer $N$ such that if $n \geq N$, then $a_n > M$ ($a_n Theorem 15.2Theorem 15.2. Let $\{a_n\}$ and $\{b_n\}$ be sequences ..