Kronecker Delta and Identity Matrix
·
Mathematics/Linear Algebra
Kronecker delta Definition 1. We define the Kronecker delta $\delta_{ij}$ by $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$ Identity matrix Definition 2. The $n \times n$ identity matrix $I_n$ is defined by $(I_n)_{ij} = \delta_{ij}$. Remark Remark. Let $A \in M_{n \times n}(F).$ Then $A$ is a diagonal matrix $\Longleftrightarrow A_{ij} = \delta_{ij} A..