Kronecker Delta and Identity Matrix
·
Mathematics/Linear Algebra
Kronecker delta Definition 1. We define the Kronecker delta $\delta_{ij}$ by $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$ Identity matrix Definition 2. The $n \times n$ identity matrix $I_n$ is defined by $(I_n)_{ij} = \delta_{ij}$. Remark Remark. Let $A \in M_{n \times n}(F).$ Then $A$ is a diagonal matrix $\Longleftrightarrow A_{ij} = \delta_{ij} A..
Matrix Multiplication
·
Mathematics/Linear Algebra
이 포스트에서 $V, W, Z$는 모두 유한차원 $F$-벡터공간으로 취급한다. 함수의 합성은 보통 $g \circ f$로 표기하는데, linear transformation의 경우 $gf$로 표기하도록 하자. Theorem 1 Theorem 1. Let $T, U_1, U_2 \in \mathcal{L}(V, W)$, and let $U \in \mathcal{L}(W, Z)$. Then (a) $UT \in \mathcal{L}(V, Z)$. (b) If $UT$ is injective, then so is $T$. (c) If $UT$ is surjective, then so is $U$. (d) IF $T$ and $U$ are bijective, then so is $UT$. Introductio..
The Matrix Representation of Linear Transformation
·
Mathematics/Linear Algebra
이 포스트에서 $V, W$는 모두 유한차원 $F$-벡터공간으로 취급한다.Ordered basisDefinition 1. An ordered basis for $V$ is a basis for $V$ endowed with a specific order.    기저에 순서를 부여한 것을 ordered basis, 순서기저라고 부른다. 즉 순서기저로 생각하면 $\{e_1, e_2, e_3\} \neq \{e_2, e_1, e_3\}$이다. Coordinate vectorDefinition 2. Let $\beta = \{v_1, ..., v_n\}$ be an ordered basis for V. We define the coordinate vector of $x$ relative to $\beta$, de..
The Dimension Theorem
·
Mathematics/Linear Algebra
이 포스트에서 $V, W$는 모두 $F$-벡터공간으로 취급한다. The nullity and rank Definition 2. Let $T \in \mathcal{L}(V, W)$. If $N(T)$ and $R(T)$ are finite-dimensional, then we define (1) the nullity of $T$, denoted nullity($T$) := dim($N(T)$), (2) the rank of $T$, denoted rank($T$) := dim($R(T)$). $N(I_V) = \{\mathbf{0}\}, R(I_V) = V$, 그리고 $N(T_0) = V, R(T_0) = \{\mathbf{0}\}$ 임을 생각해 볼 때, 직관적으로 nullity가 클수록 rank는 작아..
The Null Space and Range
·
Mathematics/Linear Algebra
이 포스트에서 $V, W$는 모두 $F$-벡터공간으로 취급한다. The null space and range Definition 1. Let $T \in \mathcal{L}(V, W)$. (a) The null space (or kernel) $N(T)$ of $T$ is the set $N(T) = \{ x \in V \,|\, T(x) = \mathbf{0} \}.$ (b) The range (or image) $R(T)$ of $T$ is the set $R(T) = \{ T(x) \in W \,|\, x \in V \}$. Theorem 1 Theorem 1. Let $T \in \mathcal{L}(V, W)$. Then $N(T) \leq V$ and $R(T) \leq W$. Proof. ..
Linear Transformation
·
Mathematics/Linear Algebra
이 포스트에서 $V, W$는 모두 $F$-벡터공간으로 취급한다. Linear Transformation Definition 1. We call a function $T : V \rightarrow W$ a linear transformation from $V$ to $W$ if, $\forall x, y \in V$ and $c \in F$, we have (a) $T(x + y) = T(x) + T(y)$ and (b) $T(cx) = cT(x)$. 어떤 함수가 linear transformation이라는 것을 줄여서 linear라고 말하기도 한다. Linear Operater Definition 2. We call $T$ a linear operator on $V$ if $T$ is a linear ..
함수의 증가, 감소
·
Mathematics/Calculus
Definition Definition. Let $x_1, x_2 \in$ an interval $I$ such that $x_1 f(x_2). $$ Theorem Theorem. Let $f: I \longrightarrow \mathbb{R}$ be a differentiable function on $I$. Then for $\forall x \in I$, $$f'(x) > 0 \Longrightarrow f \text{ is incre..
Hyperbolic Function(쌍곡선 함수)
·
Mathematics/Calculus
Definitions 1. $$\text{sinh} x = \frac{e^x - e^{-x}}{2} \qquad \text{csch} x = \frac{1}{\text{sinh} x} \\ \text{cosh} x = \frac{e^x + e^{-x}}{2} \qquad \text{sech} x = \frac{1}{\text{cosh} x} \\ \text{tanh} x = \frac{\text{sinh} x}{\text{cosh} x} \qquad \text{coth} x = \frac{\text{cosh} x}{\text{sinh} x}$$ 중심이 원점이고 반지름이 1인 원, 즉 단위원이 좌표평면 상에 있을 때 직각삼각형을 만들어서 각도에 따라 값이 변하는 cos, sin 값을 이용해 원 위의 점을 ..
Coset and Quotient Space
·
Mathematics/Linear Algebra
이 포스트에서 $V, W$는 모두 $F$-벡터공간으로 취급한다. Coset Definition 1. Let $W \leq V$. $\forall v \in V$, the set $\{v\} + W := \{v + w \,|\, w \in W\}$ is called the coset of $W$ containing $v$. It is customary to denote this coset by $v + W$ rather than $\{v\} + W$. Theorem 1 Theorem 1. Let $W \leq V$, and let $v + W$ be a coset of $W$ containing $v$. (a) $v + W \leq V \Longleftrightarrow v \in W.$ (b) Let $..
The existence of a basis
·
Mathematics/Linear Algebra
MaximalDefinition 1. Let $\mathcal{F}$ be a family of sets. A member $M$ of $\mathcal{F}$ is called maximal if $M$ is contained in no member of $\mathcal{F}$ other than $M$ itself.    말 그대로 포함 관계에 있어서 가장 최상위에 있는 원소를 maximal 이라고 한다. 예컨대 어떤 집합의 power set에서 그 집합은 자명하게 maximal element 이다. ChainDefinition 2. A collection of sets $\mathcal{C}$ is called a chain (or nest or tower) if for each pair of s..