Arc Length and Areas of Surfaces of Revolution
·
Mathematics/Calculus
Arc Length면적이나 부피와 마찬가지로 partition의 norm이 0으로 가는 극한을 취하기 위해 주어진 구간을 잘게 쪼갠다. 각 구간의 양 끝점을 잇는 line segments의 길이를 구하여 $$\sum_{k=1}^n \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}$$와 같이 합을 취해주자. ($\Delta x_k = x_k - x_{k-1}, \Delta y_k = f(x_k) - f(x_{k-1})$) 이때 Mean Value Theorem에 의해 $\Delta y_k = f'(c_k) \Delta x_k$를 만족하는 $c_k$가 $(x_{k-1}, x_k)$에 존재한다. 따라서 위 합을 Riemann sum으로 표현한 뒤 극한을 취하면 우리가 원하는 definite..
Volume of Solids
·
Mathematics/Calculus
Solid의 volume을 definite integral을 이용해 구할 수 있다. 주어진 solid가 어떤 모양인지에 따라 쉽게 계산할 수 있는 여러 가지 방법이 있다. 먼저 Cross-section, 다시 말해 단면을 이용해 solid의 부피를 구하는 방법을 알아보자. 우선 definite integral에서 면적의 넓이를 구간을 잘게 쪼개 partition의 norm이 0으로 가는 극한을 취하여 얻었듯이, volume도 마찬가지로 norm이 0으로 가게 구간을 잘게 짜르고, 이 subinterval의 길이가 축에 perpendicular하게 cross-section으로 자른 slab의 각각의 높이가 된다. 여기에 cross-section의 면적을 곱한 값의 Riemann sum이 수렴하는 값이 바로..
Chain Rule, Substitution Rule
·
Mathematics/Calculus
Chain RuleTheorem 1. If $f(u)$ is differentiable at the point $u = g(x)$ and $g(x)$ is differentiable at $x$, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at $x$, and $$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$ In Leibniz's notation, if $y = f(u)$ and $u = g(x)$, then $$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$$ where $dy / du$ is evaluated at $u = g(x)$.Pro..
Intermediate Value Theorem
·
Mathematics/Calculus
Intermediate Value TheoremTheorem 1. If $f$ is a continuous function on a closed interval $[a, b]$, and if $k$ is any value between $f(a)$ and $f(b)$, then $k = f(c)$ for some $c$ in $[a, b]$.
The Fundamental Theorem of Calculus
·
Mathematics/Calculus
Average value of a FunctionDefinition 1. If $f$ is integrable on $[a, b]$, then its average value on $[a, b]$ which is also called its mean, is $$\text{av}(f) = \frac{1}{b-a} \int_a^b f(x) dx.$$Mean Value Theorem for Definite IntegralsTheorem 1. If $f$ is continuous on $[a, b]$, then at some point $c$ in $[a, b]$, $$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$Proof. By the property (6) of defini..
Riemann Sum and Definite Integral
·
Mathematics/Calculus
Partition Definition 1. For a closed interval $[a, b]$, we subdivide the interval into subintervals, not necessarily of equal widths, as choosing $n-1$ points $\{ x_1, ..., x_{n-1} \}$ between $a$ and $b$ that are in increasing order, so that $x_0 = a partition of $[a, b]$. And we denote the width of the $k$th subinterval by $\Delta x_k$ which means that $\Delta x_k = x_k - x_{k-1}$. Norm of a P..
Mean Value Theorem
·
Mathematics/Calculus
Rolle's TheoremTheorem 1. Let $f$ be a function that satisfies the following conditions:(1) $f$ is continuous on $[a, b]$.(2) $f$ is differentiable on $(a, b)$(3) $f(a) = f(b)$Then there is a number $c \in (a, b)$ such that $f'(c) = 0$.Proof. We may think of three cases. (1) If $f(x) = k$ for any constant $k$, then $c$ can be taken to be any number in $(a, b)$.(2) If $f(x) > f(a), \forall x \in ..
Critical Numbers
·
Mathematics/Calculus
Fermat's TheoremTheorem 1. If $f$ has a local maximum or minimum at $c$, and if $f'(c)$ exists, then $f'(c) = 0$.Proof. Without loss of generality, suppose that $f$ has a local maximum at $c$. This means that $f(c) \geq f(c+h)$ for $h$ which is sufficiently close to $0$. If $h > 0$, we have $$\frac{f(c+h) - f(c)}{h} \leq 0 \\ \Longrightarrow \lim_{h \rightarrow 0^+} \frac{f(c+h)-f(c)}{h} = f'(c)..
Maximum and Minimum
·
Mathematics/Calculus
Absolute Maximum and MinimumDefinition 1. Let $c$ be a number in the domain $D$ of a function $f$. Then $f(c)$ is the(1) absolute maximum value of $f$ on $D$ if $f(c) \geq f(x), \forall x \in D$.(2) absolute minimum value of $f$ on $D$ if $f(c) \leq f(x), \forall x \in D$.$f$의 maximum과 minimum은 extreme value of $f$, 즉 $f$의 극값이라고 부르기도 한다.  Local Maximum and MinimumDefinition 2. The number $f(c)$ ..
Conditional Probability
·
Mathematics/Probability
Conditional ProbabilityDefinition 1. Let $E$ and $F$ be events. We define the conditional probability that $E$ occurs given that $F$ has occurred, denoted by $P(E | F)$, by $$P(E | F) = \frac{P(EF)}{P(F)}$$ if $P(F) > 0$.사건 $F$가 먼저 일어났다는 가정 하에 $E$가 일어나는 확률을 위와 같은 방법으로 정의한다. 이때 sample space를 $F$로 한정 지을 수 있고, $F$와 동시에 $E$가 일어나야 하므로 위와 같은 정의는 합리적이다. 위 식에서 양변에 $P(F)$를 곱함으로써 $$P(EF) = P(F)P(E | F)$$로..