Loading [MathJax]/jax/output/CommonHTML/jax.js
Taylor and Maclaurin Series
·
Mathematics/Calculus
Taylor Series함수 f를 양수의 수렴 반경을 가지고 f(x)=n=0an(xa)n 이라고 하자. 이 수렴 구간에서 미분하면 f(x)=a1+2a2(xa)+3a3(xa)2++nan(xa)n1+,f(x)=12a2+23a3(xa)+34a4(xa)2+,f(x)=123a3+234a4(xa)+345a5(xa)2+, 임을 알 수 있다. 각 등식에 x=a..
Power Series
·
Mathematics/Calculus
Power SeriesDefinition 1. A power series about x=a is a series of the form n=0cn(xa)n in which the center a and the coefficients c0,c1,...,cn are constants.Convergent Theorem for Power SeriesTheorem 1. If the power series n=0anxn converges at x=c0, then it converges absolutely for all x with |x||d|.Corollary. The convergen..
Series Tests
·
Mathematics/Calculus
The nth-Term Test for a Divergent Series Theorem 1. If n=1an converges, then an0.Proof. Let n=1an=limnsn=L, where sn is the partial sums of the series and L is the sum of the series. Note that $$\lim_{n \to \infty} s_n = \lim_{n \to \infty} s_{n-1} = L \\ \Longrightarrow \lim_{n \to \infty} (s_n - s_{n-1}) = \lim..
Least Upper Bound Property
·
Mathematics/Real analysis
Ordered SetDefinition 1. An order relationwiththefollowingtwoproperties:(1)Ifx \in Sandy \in S,thenoneandonlyoneofthestatementsx(2)Sistransitive.WecallSanorderedsetifanorderisdefinedinS.BoundedDefinition2.SupposeSisanorderedset,andE \subset S.(1)Ifthereexistsa\beta \in Ssuchthatx \leq \beta, \forall x \in E,wesaythatE$ ..
Equivalence Relation
·
Mathematics/Set Theory
Equivalence RelationDefinition 1. Let R be a relation in a set X. Then we say that (a) R is reflexive xX,xRx.(b) R is symmetric xRyyRx.(c) R is transitive xRyyRzxRz. (d) R is an equivalence relation R is reflexive, symmetric, and transitive. Equivalence relation, 즉 동치 관계는 특정한 수학적 관점에서 볼 때 두 원소..
Partial Order, Total Order
·
Mathematics/Set Theory
Partial OrderDefinition 1. A relation on a set A is called a partial order relation if and only if the relation is reflexive and transitive on A and antisymmetric on A, that is, if ab and ba, then a=b. A partially ordered set is a pair (A,), where A is a set and is a partial order relation on A.Total orderDefinition 2. A total order relati..
Relation
·
Mathematics/Set Theory
RelationDefinition 1. A relation R from A to B is a subset of A×B. It is customary to write aRb for (a,b)R. The symbol aRb is read a is R-related to b.많은 경우 A=B이며, 이때 관계 R은 relation in A 라고 말한다. Inverse RelationDefinition 2. Let A,B be sets, not necessarily distinct, and let R be a relation from A to B. Then inverse R1 of R is the relatio..
The Limit of a Sequences
·
Mathematics/Real analysis
SequenceDefinition 1. A sequence is a function whose domain is N.고등학교에서는 수열을 '수의 나열'이라고 정의하곤 하는데, 정의에 의하면 꼭 '수'를 나열한 것만이 수열이 될 필요는 없다. 수가 아닌 함수나 다른 대상도 가능하다. Bounded SequenceDefinition 2. A sequence {an} is said to be bounded if its range is bounded. That is, there exists a number M>0 such that |an|M for all nN.Monotonic SequenceDefinition 3. A sequ..
Infinite Series
·
Mathematics/Calculus
Infinite SeriesDefinition 1. Given a sequence of numbers {an}, an expression of the form a1+a2++an+ is an infinite series. The number an is the nth term of the series. The sequence {sn} defined by sn=nk=1ak is the sequence of partial sums of the series, the number sn being the nth partial sum. If the sequence of partial sums con..
Sequences
·
Mathematics/Calculus
Sequence, 즉 수열은 숫자들의 나열이라고 정의할 수 있고 {an}n=1로 표기되는 무한수열은 정의역이 자연수인 함수로 간주할 수 있다.Convergence and Divergence of SequencesDefinition 1. The sequence {an} converges to the number L if for every positive number ϵ there corresponds an integer N such that for all n, $$n > N \Longrightarrow |a_n - L| diverges. If {an} converges to L, we write $\lim_{n \righ..